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A novel fast version of particle swarm
optimization method applied to the problem of
optimal capacitor placement in radial
distribution systems
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Abstract— Particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. One main difficulty in
applying PSO to real-world applications is that PSO usually needs a large number of fitness evaluations before a satisfying
result can be obtained. This paper presents a modified version of PSO method that can converge to the optima with less
function evaluation than standard PSO. The main idea is inserting two additional terms to the particles velocity expression. In
any iteration, the value of the objective function is a criterion presenting the relative improvement of current movement with
respect to the previous one. Therefore, the difference between the values of the objective function in subsequent iterations can
be added to velocity of particles, interpreted as the particle acceleration. By this modification, the convergence becomes fast
due to new adaptive step sizes. This new version of PSO is called Fast PSO (FPSO). To evaluate the efficiency of FPSO, a set
of benchmark functions are employed, and an optimal capacitor selection and placement problem in radial distribution systems
is evaluated in order to minimize cost of the equipment, installation and power loss under the additional constraints. The results
show the efficiency and superiority of FPSO method rather than standard PSO and genetic algorithm.

Index Terms— convergence speed, fast PSO, capacitor placement, particle swarm optimization, radial distribution system

INTRODUCTION

1
In recent years, many optimization algorithms are in-
troduced. Some of these algorithms are traditional op-
timization algorithms. Traditional optimization algo-
rithms use exact methods to find the best solution. The
idea is that if a problem can be solved, then the algorithm
should find the global best solution. Large search spaces
increases the evaluation cost of these algorithms. There-
fore the complex large spaces slow down the convergence
rate of the algorithm to find the global optimum. Linear
and nonlinear programming, brute force or exhaustive
search and the divide and conquer methods are some of
the exact optimization methods.

Other optimization algorithms are stochastic algo-
rithms, consisted of intelligent, heuristic and random me-
thods. Stochastic algorithms have several advantages
compared to other algorithms as follows [1]:

1. Stochastic algorithms are generally easy to imple-
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2. They can be used efficiently in a multiprocessor
environment.
3. They do not require the problem definition func-
tion to be continuous.
4. They generally find optimal or near-optimal solu-
tions.

Two well known intelligent stochastic algorithms are
Particle swarm optimization (PSO) and genetic algorithm
(GA). PSO is a population-based searching technique
proposed in 1995 [2] as an alternative to GA [3]. Its devel-
opment is based on the observations of social behavior of
animals such as bird flocking, fish schooling, and swarm
theory. Compared with GA, PSO has some attractive cha-
racteristics. First of all, PSO has memory, that is, the
knowledge of good solutions is retained by all particles,
whereas in GA, previous knowledge of the problem is
destroyed ones the population is changed. Secondly, PSO
has constructive cooperation between particles, i.e. par-
ticles in the swarm share their information.

In today’s power system, there is a trend to use nonli-
near loads such as energy-efficient fluorescent lamps and
solid-state devices. Distribution systems provide power
to a wide variety of load types. Resistive loads (power
factor = 1.0) require no reactive power at all, while induc-
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tive loads (power factor < 1.0) require both active and
reactive power. Inductive loads (e.g. motors) are always
present so that the line current consists of a real (or resis-
tive) component and an inductive component. Both com-
ponents contribute to the MW losses (which are propor-
tional to the square of the current magnitude), voltage
drop and line loading (measured in A or MVA) reactive
currents increased ratings for distribution components.
The resistive component of the current cannot be substan-
tially reduced as this is the part of the current that actual-
ly performs work (defined by demand). The reactive
component of the current can be reduced by installation
of capacitors “close” to the loads. This has the effect that
the reactive power needed is generated locally and the
distribution circuits are relieved from the reactive power
transfer. Effective placement of the shunt capacitors (de-
pending on the situation) can improve the voltage profile
and can greatly reduce the losses and the line loading.
The capacitor sizing and allocation should be properly
considered, or else they can amplify harmonic currents
and voltages due to possible resonance at one or several
harmonic frequencies. This condition could lead to poten-
tially dangerous magnitudes of harmonic signals, addi-
tional stress on equipment insulation, increased capacitor
failure and interference with communication system.
Thus, the problem of optimal capacitor placement con-
sists of determining the locations, sizes, and number of
capacitors to install in a distribution system such that the
maximum benefits are achieved while operational con-
straints at different loading levels are satisfied [4].

Optimal capacitor placement has been investigated
since the 60’s. Early approaches were based on heuristic
techniques applied to relaxed versions of the problem
(some of the more difficult constraints were dropped). In
the 80’s, more rigorous approaches were suggested as
illustrated by the paper by Grainger [5], [6]. Baran-Wu [7]
have formulated the capacitor placement problem as a
mixed integer nonlinear program: the problem then has
been approximated by a differentiable function that al-
lowed the solution by Benders decomposition. In the 90’s,
combinatorial algorithms were introduced as a means of
solving the capacitor placement problem: simulated an-
nealing has been proposed in [8], genetic algorithms in
[9], and tabu search algorithms in [10]. Delfanti et. al. [11]
have introduced a genetic algorithm (GA ) approach in
VAR planning of a small CIGRE system of the Italian
transmission and distribution network in order to deter-
mine the minimum investment required to satisfy suita-
ble reactive power constraints. Unfortunately the intro-
duced GA algorithm had the problem of a large number
of simplex iterations leading to very long computation
time.

However, in this paper, a modified PSO, named fast
PSO (FPSO) is proposed which asserts fast convergence
property and consequently lower the number of function
evaluation. FPSO possesses two additional terms added
to the standard PSO velocity updating formula. These

statements cause FPSO to move to the optimal solution
faster than the standard PSO, adaptively. Therefore, these
modifications speed up the PSO convergence rate. The
effectiveness and efficiency of the proposed FPSO is first
examined using some well-known optimization bench-
marks. Then, it is applied to the problem of optimal capa-
citor placement in radial distribution systems. Numerical
simulations are presented to validate the applicability and
efficiency of our modified optimization scheme.

The rest of this paper is preceded as follows. Section 2
presents the standard PSO algorithm. Section 3 introduc-
es FPSO. In Section 4, first the efficiency of FPSO algo-
rithm is verified using some standard test functions.
Then, the problem of optimal capacitor placement is
solved using proposed FPSO method. Finally, some con-
clusions are given in section 5.

2 THE STANDARD PSO ALGORITHM

2.1 Review Stage

A particle swarm optimizer is a population based stochas-
tic optimization algorithm modeled based on the simula-
tion of the social behavior of bird flocks. PSO is a popula-
tion-based search process where individuals initialized
with a population of random solutions, referred to as par-
ticles, are grouped into a swarm. Each particle in the
swarm represents a candidate solution to the optimiza-
tion problem, and if the solution is made up of a set of
variables, the particle can correspondingly be a vector of
variables. In PSO system, each particle is “flown” through
the multidimensional search space, adjusting its position
in the search space according to its own experience and
that of neighboring particles. The particle, therefore,
makes use of the best position encountered by itself and
that of its neighbors to position itself toward an optimal
solution. The performance of each particle is evaluated
using a predefined fitness function, which encapsulates
the characteristics of the optimization problem [12].

The core operation of PSO is the updating formulae of
the particles, i.e. the equation of velocity updating and the
equation of position updating. The global optimizing
model proposed by Shi and Eberhart is as follows [12]:

Vis1=WXVi+RANDXC1 X (Ppest-Xi) Frand > c X (Gpest-Xi) Q)
Xi+1=Xi+Vi+1 (2)

where w is the inertia weight factor, vi is the velocity of
particle i, xi is the particle position and C; and C; are two
positive constant parameters called acceleration coeffi-
cients. RAND and rand are the random functions in the
range [0, 1], Pbest is the best position of the ith particle
and Gbest is the best position among all particles in the
swarm.

3 FAST PSO ALGORITHM

The main drawback of PSO approach is slow convergence
specifically prior to providing an accurate solution, close-
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ly related to its lack of any adaptive acceleration terms in
the velocity updating formulae. In equation 1, c1 and c2
determine the step size of the particles movements
through the Pbest and Gbest positions, respectively. In
the original PSO, these step sizes are constant and for the
all particles are the same.

In any iteration, the value of the objective function is a
criterion that presents the relative improvement of this
movement with respect to the previous one. Thus the dif-
ference between the values of the objective function in
consequent iterations can represent the particle accelera-
tion.

Therefore, velocity updating formulae turns to the fol-
lowing form.

Visg = WXV; + (f(Ppest) - f(Xi )) X RANDX C1 X (Peg; - ®)
Xi) + (f(Gbest) - f(XI)) x rand x Cy X (Gbest - Xi)

where f(Pyes) is the best fitness function that is found by ith
particle and f(Gyey) is the best fitness function that is
found by swarm up to now and other parameters are
chosen the same as section A. These two terms, i.e.
(F(Ppest) - f(xi )) and (f(Gpeg) - f(x;)) cause to have an adaptive
movement.
The steps of FPSO algorithm are as follows:
1. Initialize particles positions and velocities, ran-
domly.
2. Calculate the objective functions values of par-
ticles.
3. Update the global and local best positions and
their objective function values.
4. Calculate new velocities using equation (3).

5. Update the positions.
6. If stop condition is attained stop otherwise go to
step 2.
Remarks:

1. The term (f(Puest) - f(xi)) and (f(Gpest) - f(xi)) are named
local and global adaptive coefficients, respectively. In
any iteration, the former term defines the movement
step size in the best position’s direction which is found
by ith particle, and the later term defines adaptive
movement step size in the best optimum’s direction
point which ever have been found by the swarm. In oth-
er words, the adaptive coefficients decrease or increase
the movement step size relative to being close or far
from the optimum point, respectively. By means of this
method, velocity can be updated adaptively instead of
being fixed or changed linearly. Therefore, using the
adaptive coefficients, the convergence rate of the algo-
rithm will be increased rather than performed by the
proportional large or short steps.

2. Stochastic optimization approaches suffer from the
problem of dependent performance. This dependency is
usually because of parameter initializing. Thus, we ex-
pect large variances in performance with regard to dif-
ferent parameter settings for FPSO algorithm. In gen-
eral, no single parameter setting exists which can be

applied to all problems. Therefore, all parameters of
FPSO should be determined optimally, by trial and er-
ror.

3. There are three stopping criteria. The first one is related
to the maximum number of allowable iterations set for
the algorithm. The second one is when no improvement
has been made for a certain number of iterations in the
best solution, and the third one is when a satisfactory
solution is found.

4. The fast version of PSO is proposed for continuous va-
riable functions. Moreover, the main idea of speeding
up can be applied to the discrete form of the PSO [13].
We take this into our consideration as a future work.

5. Increasing the value of the inertia weight, w, would in-
crease the speed of the particles resulting in more explo-
ration (global search) and less exploitation (local
search). On the other hand, decreasing the value of w
will decrease the speed of the particle resulting in more
exploitation and less exploration. Thus, an iteration-
dependent weight factor often outperforms a fixed fac-
tor. The most common functional form for this weight
factor is linear, and changes with step i as follows:

Wmax — Wmin

Wi =Wmax —
I+ Niter

(4)

where Ni.r is the maximum number of iterations and W

and W, are selected to be 0.8 and 0.2, respectively.

6. Lastly, the proposed FPSO is still a general optimiza-
tion algorithm that can be applied to any real world
continuous optimization problems. In the next section,
we will apply FPSO approach to several benchmark
functions and compare the results with standard PSO
and GA algorithms.

4 RESULTS OF SIMULATIONS

In this section, first the efficiency of FPSO is tested using
a set of test functions. Then, the FPSO algorithm is ap-
plied to solve the problem of optimal capacitor place-
ment.

4.1 Evaluating FPSO using benchmarks

Here, some well-known benchmark functions (listed in
Appendix A) are used to examine the effectiveness and
convergence speed of the proposed FPSO technique. To
avoid any misinterpretation of the optimization results,
related to the choice of any particular initial popula-
tions, we performed each test 100 times, starting from
various randomly selected solutions, inside the hyper
rectangular search domain specified in the usual litera-
ture.

The performance of FPSO is compared to continuous
GA and PSO algorithms using 15 functions listed in Ap-
pendix A. The experimental results obtained for the test
functions, using the 3 mentioned different methods, are
given in Table 1. In our simulations, each population in
GA has 10 chromosomes and a swarm in FPSO and PSO
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has 10 particles. Other parameters of the three algo-
rithms are selected optimally by trial and error. For each
function, we give the average number of function evalu-
ations for 100 runs. The best solution found by 3 me-
thods was similar, so there are not given here.

Note that the FPSO has shown drastically better re-
sults in convergence and evaluation costs compared
with GA and PSO, as it utilizes adaptive movements to
reach to the optima, while GA and PSO do not have
such an element. Fig. 1 shows a typical diagram of three
algorithms convergence rates for B2 function, starting
from a same initialization point. As it can be seen, al-
though, all algorithms can find the optima, but FPSO is
dramatically faster than the others. Therefore, in many
real world applications where real time computations
and less CPU time consumption are necessary, FPSO
may work better than GA and PSO.

TABLE 1

AVERAGE NUMBER OF OBJECTIVE FUNCTION EVALUATIONS
USED BY THREE METHODS

Function/Method FPSO PSO GA
RC 38 42 48
ES 67 90 92
GP 31 39 41
B2 27 33 32
SH 44 61 57
R, 45 63 65
Z 50 62 62
DI 38 55 60
Hsa 39 68 71
S43 55 82 91
S47 51 74 76
Si10 53 81 79
R;s 159 244 251
Zs 123 194 171
Hsa 132 212 195
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Fig. 1. Convergence rate of three algorithms for B2 function

5 SOLVING OPTIMAL CAPACITOR PLACEMENT
USING FPSO

Now that the efficiency and high speed convergence
property of the proposed FPSO algorithm has been re-
vealed by simulation results of benchmark functions, the
next step is to solve the problem of optimal capacitor
placement with FPSO method.

The optimal capacitor placement problem has many
variables including the capacitor size, capacitor location
and capacitor equipment and installation costs. In this
section we consider a distribution system with nine
possible locations for capacitors and 27 different sizes of
capacitors. Capacitor values are often assumed as conti-
nuous variables whose costs are considered as propor-
tional to capacitor size in past researches [14-16]. How-
ever, commercially available capacitors are discrete ca-
pacities and tuned in discrete steps. Moreover, the cost
of capacitor is not linearly proportional to the size.
Hence, if the continuous variable approach is used to
choose integral capacitor size, the method may not re-
sult in an optimum solution and may even lead to unde-
sirable harmonic resonance conditions [17]. However,
considering all variables in a nonlinear fashion will
make the placement problem very complicated. In order
to simplify the analysis, only fixed-type capacitors are
considered with the following assumptions: (1) balanced
conditions; (2) negligible line capacitance; and (3) time-
invariant loads. The objective function of this problem is
to minimize f. It is composed of two parts: (1) the cost of
the power loss in the transmission branch and (2) the
cost of reactive power supply. Therefore, the fitness
function is defined as [18].

m - -
f =Kp xPloss +Zn=1Qquqn (5)

where K is the equivalent annual cost per unit of power
loss ($/KWatt), n is the bus number, Kcj, is the equiva-
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lent capacitor cost installed in bus n ($/KVar),
chn = jxKg is the size of the capacitor, K; is the capa-

citor bank size (KVar) (here K;=150), and j= the number
of banks used in any bus.

Here, a radial distribution feeder is used as an exam-
ple to show the effectiveness of this algorithm. The test-
ing distribution system is shown in Fig. 2.

This feeder has nine load buses with rated voltage of
23 kV. Tables 2 and 3 show the loads and feeder line
constants. Kp is selected to be US$ 168/kW. The base
value of voltage and power is 23 kV and 100 MW re-
spectively [18]. Possible choice of capacitor sizes and
costs are shown in Table 4 by assuming a life expectancy
of 10 years (the placement, maintenance, and running
costs are assumed to be grouped as total cost). The main
procedure of finding optimal capacitor placements with
FPSO method is illustrated in Fig. 3.

Supply

source

Fig. 2. Testing distribution system with nine buses

Select parameters of FPSO

v

Generate the randomly positions|
and velocities of particles

v

Initialize, pbest with a copy of
the position for particle,

determine gbest
[P

v‘

Update velocities and positions
according to Egs (2), (3)

v

Evaluate the fitness of each
particle

v

update pbest and gbest

Satisfying
stopping
criterion

Optimal capacitor placements

TABLE 2

LOAD DATA OF THE TEST SYSTEM

Fig. 3. Flow chart of optimal capacitor placements with FPSO

Bus 1 2 3 4 5 6 7 g8 9
P(kW) | 1840 |980|1790|1598 | 1610|780 |1150|980|1640
Q(Var) | 460 |340| 446 |1840| 600 |110| 60 (130|200

TABLE 3
FEEDER DATA OF THE TEST SYSTEM
From bus 1 From bus ] R X
0 1 0.1233 0.4127
1 2 0.0140 0.6051
2 3 0.7463 1.2050
3 4 0.6984 0.6084
4 5 1.9831 1.7276
5 6 0.9053 0.7886
6 7 2.0552 1.1640
7 8 4.7953 2.7160
8 9 5.3434 3.0264
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TABLE 4
POSSIBLE CHOICE OF CAPACITOR SIZES AND COSTS

J 1 2 3 4 5 6 7 8 9
Q. | 150 | 300 | 450 | 600 | 750 | 900 |1050 1200|1350
K 10.500]|0.350(0.253|0.220/0.276|0.183|0.228|0.170(0.207
J 10 11 12 | 13 14 | 15 16 | 17 18
Q. |1500 (1650|1800 (1950|2100|2250|2400 2550|2700
;10.201|0.193|0.187|0.211/0.176|0.197|0.170|0.189|0.187
j 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
Q. |2850(3000|3150(33003450|3600|3750 3900|4050
; 10.183|0.180(0.195|0.174|0.188|0.170(0.183|0.182|0.179

The effectiveness of the method is illustrated by a
comparative study of the following two cases: Case 1 is
without capacitor installation and Case 2 use the FPSO
approach for optimizing the size and the placement of
the capacitor in the radial distribution system.

The capacitor sizes, power loss and the total cost are
shown in Table 5. Fig. 4 depicts the minimum value of
cost function in any iteration for 100 iterations. Before
optimization (Case 1), the power loss is 775 kW and total
cost is 1.302e5 $. After optimization (Case 2), the power
loss becomes 667.5 kW and the total cost becomes
1.130€5 $.

TABLE 5
SUMMARY RESULT OF THE APPROACH

Capacitor size (k'Var) total
P loss
cost
Bus|O| 1 [ 2 |3 |4 |5|6]|7]8]9 (kW) %)

Case 775 [1.302e5

Case 01500150015001500400{450(300150|300/667.5(1.130e5

126 T T T T T

minirnurn value of cost function that is founded in iteration

192 1 1 1 1
a

1
20 40 60 a0 100 120
number of iteration

Fig. 4. Minimum value of cost function in each iteration

5 CONCLUSIONS

In this paper, a modified optimization technique based
on PSO algorithm is introduced and it is called fast PSO
(FPSO). Using adaptive coefficients, the step sizes of
particles movements are changed appropriately to reach
the optima, rapidly. The important characteristics of
FPSO are: less function evaluation and high convergence
rate. Consequently in real time processes, FPSO seems to
outperform both the standard PSO and the genetic algo-
rithm. The efficiency of the proposed FPSO algorithm is
shown using several well-known benchmark functions.
Then, the proposed FPSO method is used to successfully
solve the problem of optimal capacitor selection and
placement problem in radial distribution systems.

6 END SECTIONS

6.1 APPENDIX A

Some well-known benchmark functions of optimiza-
tion problems [19].

Branin RCOS (RC) (2 variables):

2
RC(x1,%2) =(X2 —(izjxlz +(ijl —6] +
4r 4
10(1 - (ijj cos(xq ) +10;
8

Search domain: -5 < x1<10,0< x2 < 15

no local minimum; 3 global minima

B2 (2 variables):

B2(xq1,X2 )= X12 + 2x§ —0.3c0s(37xq ) —0.4cos(4nxy )+0.7;
Search domain: -100 < x; < 100, j=1, 2;

several local minima; 1 global minimum

Easom (ES) (2 variables):

ES(xq,Xp ) = —c0s( g )€0s( Xz Jexp(~((xy =7 )% +(xp — ) );
Search domain: -100<x;<100, j=1, 2;

several local minima, 1 global minimum

Goldstein and Price (GP) (2 variables):

GP(xq,Xp )=

1+(+xy + X2 +1)2

x (19— 14x; +3xZ ~14xy +6xq%p + 3% )]X
30 + (2% — 3%, )? x .
[(18 —32x +12x2 +48xy — 36X Xp + 27X )]’

Search domain: -2 <x;< 2, j=1, 2;

4 local minima; 1 global minimum
Shubert (SH) (2 variables):
SH(xq. %) = {35 J cos[(J + 1) + 1

x {Z?zljcos[( j+1)xp + j]}:
Search domain: -10 < x; < 10, j=1, 2;
760 local minima; 18 global minimum
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De Joung (DJ) (3 variables):

2 2

DJ(xq,X9,X3 )=x12 +X5 + X3

Search domain: -5.12< x;<5.12, =1, 2, 3;
1 single minimum (local and global)
Hartmann (H3, 4) (3 variables):

4 3
Haa(x1,%2,%3) = =251 Ci expl 271 (X

- pij)?1;

Search domain: 0<x;<1,j=1,2,3;
4 local minimal global minimum
Shekel (Ssn) (3 variables):

San(X)=-2]4 (X —a)T x(X-aj)+¢ 17

X

.
=(X1,X2,X3,X4 )

) 1.2 T.
;a; =(af af afaf)T;

Search domain: 0 < x;< 10, j=1, 2, 3,4;
n local minima; 1 global minimum
Rosenbrock (R,) (n variables):

Rn(X) ==, - [100(x] - xj,1)? +(xj ~1)%;
Search domain: -5 < x;< 10, j=1, ..., n

several local minima;1 global minimum
Zakharov (Z,) (n variables):

Zp(X ):(Z?zlsz' )+(Z?=1O-5jxj )2 +(Z?=1O-5Xj )
Search domain: -5 < x; <10, j=1, ..., n

several local minima; 1 global minimum.
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